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Abstract  
Age is a major risk factor for lung disease. To understand the mechanisms underlying this 
association, we characterized the changing cellular, genomic, transcriptional, and epigenetic 
landscape of lung aging using bulk and single-cell RNAseq (scRNAseq) data. Our analysis revealed 
age-associated gene networks that reflected hallmarks of aging, including mitochondrial 
dysfunction, inflammation, and cellular senescence. Cell type deconvolution revealed age-
associated changes in the cellular composition of the lung: decreased alveolar epithelial cells and 
increased fibroblasts and endothelial cells. In the alveolar microenvironment, aging is 
characterized by decreased AT2B cells and reduced surfactant production, a finding that was 
validated by scRNAseq and IHC. We showed that a previously reported senescence signature, 
SenMayo, captures cells expressing canonical senescence markers. SenMayo signature also 
identified cell-type specific senescence-associated co-expression modules that have distinct 
molecular functions, including ECM regulation, cell signaling, and damage response pathways. 
Analysis of somatic mutations showed that burden was highest in lymphocytes and endothelial 
cells and was associated with high expression of senescence signature. Finally, aging and 
senescence gene expression modules were associated with differentially methylated regions, 
with inflammatory markers such as IL1B, IL6R, and TNF being significantly regulated with age. 
Our findings provide new insights into the mechanisms underlying lung aging and may have 
implications for the development of interventions to prevent or treat age-related lung diseases. 
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Age is a substantial risk factor in nearly all lung diseases1. Acute diseases such as pneumonia 
and ARDS, and chronic diseases such as bronchiectasis, chronic obstructive lung disease (COPD) 
and idiopathic pulmonary fibrosis (IPF) are both more common and more lethal in aged 
individuals2.  While there has been significant progress in understanding the role of aging-
related mechanisms in advanced lung disease3-5 and in describing the physiological effects of 
aging in the lung6-8, the cellular and molecular mechanisms that underlie the lung’s aging 
response remain poorly understood.  
 
There has been limited knowledge generated concerning the cellular aging of the lung and 
much of it is in the context of disease9. Various studies have shown that pulmonary stem cell 
exhaustion and epithelial cell senescence are associated with advancing age and are implicated 
in the pathogenesis of IPF3. Mucociliary clearance and ciliary beat frequency were found to 
decrease with age and increase predisposition to pneumonia in the elderly10. Changes in ECM 
composition with age have also been described. Godin et al. reported increased collagen and 
decreased elastin and laminin in decellularized murine lung scaffolds11. More recently, Lee et al. 
reported age-associated fibrotic changes including increased density of collagen and decreased 
surfactant secretion12. 
 
Studies of lung aging at single-cell resolution have been limited to date. Recent advances in 
sequencing technologies and the availability of larger datasets such as the Genotype-Tissue 
Expression (GTEx) Project13 have enabled the identification of novel markers of aging and 
senescence in other organ systems14,15. Chow et al. identified changes in bulk and single-cell 
RNAseq expression and relative cell type proportions with age in the context of SARS-CoV-2 
susceptibility16. They observed increased transcriptional signatures associated with cell 
adhesion and stress responses. Angelidis et al. developed a mouse atlas of lung aging using 
single cell transcriptomics and mass spectrometry-based proteomics to determine the changes 
that occur with age17. To date, no comprehensive study of single-cell transcriptomic and 
epigenetic changes in the human lung with aging has been published. 
 
In this work, we used an integrated multi-omic approach to determine cell type aging and 
senescence molecular programs in the human lung [Fig 1A]. We first identified gene co-
expression networks in a large publicly available bulk RNA dataset13. Using single cell RNAseq 
data for validation, we showed that while some co-expression networks are broadly expressed, 
others reflected lung cell type-specific aging, with previously undescribed changes in alveolar 
cell subpopulations. Moreover, we defined an association between somatic mutation burden 
and expression of senescence-associated gene networks, connecting the damage accumulation 
hypothesis of aging with cellular senescence18. Finally, we identified epigenetic regulators of 
lung aging by assessing differentially methylated CpGs associated with co-expression networks. 
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Results 
 
Gene co-expression network analysis reveals age-associated modules. 

 
To identify signatures of aging and senescence in transcriptomic data from lungs, we developed 
a gene co-expression approach that combines bulk and single-cell RNAseq data [Fig 1A]. Gene 
co-expression network analysis was performed using Weighted Correlation Network Analysis 
(WGCNA)19. Using bulk RNAseq dataset from the Genotype Tissue Expression Project, genes 
were grouped into 133 modules [Supp Fig 1] ranging from 30 to 4181 genes in size. Of these, 30 
of 133 were significantly correlated with age (16 positive, 14 negative) [Fig 1B]. The molecular 
function of age-associated co-expression networks was assessed by enrichment of REACTOME 
pathways. Positively correlated modules were enriched for signal transduction, extracellular 
matrix (ECM) organization, and immunoregulatory interactions. Negatively correlated modules 
included TCA cycle and respiratory electron transport, cell cycle, and metabolism of RNA [Fig 
1C].  This method uses gene co-expression analysis, which addresses some of the age-related 
increases in cell-to-cell variability and stochasticity 20. The results of enrichment analysis for co-
expression networks were consistent with the those reported in in de Vries et al. 21 and Chow et 
al. 16, where linear models were applied to individual genes in the GTEx dataset to determine 
age differences in expression.  
 
Deconvolution of modules revealed that aging is associated with decreases in alveolar 
epithelial cells and increases in lung fibroblast and endothelial cells.  
 
To determine changes in cell-type-specific expression of aging modules, we performed 
deconvolution of bulk RNAseq data using our group’s previously published single-cell RNAseq 
dataset as a reference22 [Supp Fig 2]. Using the resulting cell-type proportion estimates for each 
sample, we sought to determine how the cell-type composition of the human lung changes 
with age. Cell-type proportions for each sample were correlated with age and Z-transformed 
[Fig 2A]. We observed significant decreases in the amount of both type I (Z=-0.28, FDR<0.001) 
and type II (Z=-0.30, FDR p<0.001) alveolar epithelial cells, consistent with previous published 
findings16,23. Endothelial cells, fibroblasts, and myofibroblasts all increased with age, suggesting 
that the cellular composition of the lung changes with advancing age. Specifically, aging appears 
to be associated with a reduced proportion of epithelial cells and an increase in endothelial and 
mesenchymal cells.  
 
Next, we sought to determine whether co-expression modules corresponded to specific cell 
types. Cell type proportions for all samples were correlated with the module eigengene for 
each module, revealing patterns of cell type specificity. To assess whether this cell-type 
deconvolution was successful, we calculated expression of each module in our single-cell 
RNAseq dataset. Heatmaps of both cell type associations based on deconvolution and single-
cell expression scores were plotted side by side, demonstrating the accuracy of this approach 
[Fig 2B]. Notably, agreement between both methods was present for the majority of cell-types, 
with the exception of cells with low representation in our bulk RNAseq dataset (macrophages, 
B/T cells, peribronchial cells, and ciliated cells) [Supp Fig 2]. 
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To identify specific genes that drive module function, hub genes were identified for each of the 
age and senescence-associated modules. Hub genes were defined as those that had a high 
module membership (correlation of gene expression to ME) and high correlation with age 
based on expression in GTEx RNAseq data. Notable hub genes included IGFBP7 in the ECM 
module, QDPR in the mitochondrial module, and HHIP in the cholesterol biosynthesis module 
[Fig 2C]. GLB1 which encodes SA-B-Gal, one of the gold standard markers for cellular 
senescence24, and NEU1, which encodes a lysosomal sialidase implicated age-related 
neurodegeneration25, were hub genes for the lysosome module. To confirm the association of 
these hub genes with aging, age correlation was calculated directly in our single-cell RNAseq 
dataset [Fig 2D]. IGFBP7 was expressed in most cell types and positively correlated with age in 
AT1 and immune cells (FDR p<0.001). GLB1 and NEU1 were expressed and positively correlated 
with age in mesenchymal and immune cells (FDR p<0.001). QDPR was negatively correlated 
with age in epithelial cells and macrophages (FDR p<0.001). Finally, HHIP was negatively 
correlated with age and specific to AT2 cells (r=-0.11, FDR p<0.001). Hence, we used single-cell 
RNAseq data to confirm the cell-type specificity and age association of module hub genes. 
 
Alveolar microenvironment aging is characterized by decreased AT2B cells and reduced 
surfactant production. 
 
The cholesterol biosynthesis module was the most strongly negatively (r=-0.31, FDR p=2e-12) 
correlated with increased age [Fig 1B]. This module contained HHIP as a hub gene, a gene that 
has been implicated in the pathogenesis of COPD and is expressed at lower levels in COPD 
subjects based on human single-cell RNAseq26. This module and its hub gene were primarily 
expressed in AT2 cells [Fig 3A, 3B]. We examined the expression of HHIP in both bulk and single-
cell RNAseq datasets and confirmed that its expression is negatively correlated with age (r=-
0.34, p=9e-17) [Fig 2D, 3C]. Finally, other established AT2 cell markers (SFTPA1, SFTPA2, SFTPC) 
were found to correlate with HHIP expression (r =0.30 to 0.37, FDR p<0.001) and were 
negatively correlated with age (-0.19 to -0.09, FDR p<0.001) [Fig 3D]. Taken together, these 
findings suggest that HHIP is a central gene in a molecular program that leads to reduced 
surfactant production in AT2 cells. When examining single-cell data for AT2 cells independently, 
we observed two subpopulations  that formed independent clusters on a UMAP plot [Fig 3E], 
similar to what has been reported previously by our group and others26-28. Travaglini et al. 
described two subtypes: bulk AT2 (AT2B) cells that have high expression of surfactants and 
correspond with a functional phenotype, and signaling AT2 (AT2S) cells that have lower levels of 
surfactant and correspond with a more stem-like progenitor phenotype 27. In our dataset, we 
confirmed that AT2S cells exhibited reduced expression of surfactants and the surfactant-
associated gene module compared to AT2B cells [Fig 3E]. Additionally, AT2B cells were 
associated with lower subject age (41 versus 49, FDR p<0.05) and exhibited higher expression of 
HHIP (0.44 versus 0.14, FDR<0.05) [Fig 3E,3F]. Hence, the proportion of HHIP-expressing, 
surfactant-producing AT2B cells decreased with age. To confirm the association between HHIP 
expression and age, we performed immunohistochemistry in aged and young FFPE sections. 
HHIP was stained with surfactant protein C (SPC), a marker for type II alveolar epithelial cells. 
We observed co-localization of HHIP and SPC, confirming that HHIP is primarily expressed in 
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AT2 cells [Fig 3G]. We further sought to validate the negative correlation between HHIP 
expression and age that we observed at the transcriptomic level. We quantified the proportion 
of SPC-positive cells that also stained positive for HHIP. We observed a significant difference 
between young and aged subjects (0.55 versus 0.31, t=2.95, p=0.016) [Fig 3H]. Taken together, 
these results indicate that AT2 cells not only decrease in number with age and exhibit reduced 
expression of gene networks central to surfactant production and normal progenitor function, 
but also that the subpopulation functionally involved in maintenance of the alveolus declines. 
These findings potentially explain the lung’s increased predisposition to injury with age. 
 
SenMayo captures cells expressing a senescence gene signature but does not correlate with 
age.  
 
Next, we were interested in determining whether we could identify senescence-associated 
modules by using previously identified senescence gene signatures. Modules were assessed for 
enrichment of six established senescence gene signatures29,30.  Fisher’s Exact testing was 
performed to compare enrichment of all six gene lists across all modules. Strong overlap was 
observed across known senescent gene lists [Fig 4D, Supp Fig 3]. Interestingly, module 15 was 
the only module that was significantly enriched (p<0.05) for all six senescence lists. Because the 
SenMayo gene signature outperformed all other gene lists in its ability to detect senescent 
cells14, we evaluated SenMayo as a potential gene signature for further analysis of co-
expression modules. A SenMayo score was calculated for all cell types in a single-cell RNAseq 
dataset to determine whether this gene signature can accurately identify cells with senescent 
phenotype [Fig 4A].  High SenMayo cells were identified using an arbitrary SenMayo score 
threshold. These cells were then plotted using a UMAP representation, showing that they 
cluster together [Fig 4B]. To confirm that SenMayo score was characterizing senescent cells and 
not cells with an inflammatory phenotype, we also examined expression of canonical 
senescence markers in this dataset. Expression of CDKN1A, a known marker of senescence not 
included in the SenMayo list, was found to be increased in high SenMayo scoring cells [Fig 4C]. 
This subpopulation consisted primarily of fibroblasts, macrophages, and endothelial cells [Fig 
4E]. Notably, SenMayo score was not significantly correlated with age in any cell type (FDR 
p>0.05). 
 
Senmayo identifies senescence-associated co-expression modules that have distinct molecular 
functions. 
 
After establishing that SenMayo could be used to identify senescent features in our datasets, 
we used this signature to determine which modules were associated with cellular senescence. 
Of the 30 modules correlated with age, six modules were also enriched for SenMayo gene 
signature (FET p<0.05) accounting for 59 of the 125 SenMayo genes [Fig 5A]. These modules 
had distinct functional enrichment for REACTOME terms [Fig 5B]. Additionally, they exhibited 
cell-type-specific expression, both in single-cell data and based on deconvoluted proportions 
[Fig 5C, 5D]. The module that included the greatest number of SenMayo genes (23 genes 
including CXCL1/CXCL2/CXCL3, IL1A/B, IL6, TNF, SERPINE1, and VEGFA) also included 
p21/CDKN1A, a hallmark of senescence, as a hub gene. As we previously noted, this was the 
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only module significantly enriched for all six established senescence lists. Deconvolution 
correlated this module (15) with vascular and monocytic cells, with enrichment for 
cytokine/interleukin signaling pathways. p21/CDKN1A was also significantly correlated with age 
in these cell types in the single-cell RNAseq dataset (p<0.05).  Two modules (19, 20) correlated 
with fibroblast and myofibroblast cell types and were enriched for ECM pathways. Genes 
included IGF1 (19), IGF binding-proteins, and matrix metalloproteinases. Another two modules 
(28, 31) were enriched in immune pathways and corresponded to monocytes/endothelial cells 
and alveolar macrophages, respectively. Module 31 was negatively correlated with age and its 
top hub gene, SYK, encodes a signaling molecule associated with immune deficiency and 
dysregulation.  Finally, the module most strongly correlated with age (2, r=0.26, p<0.05) 
contained Wnt signaling genes and p16/CDKN2A as a hub gene. This module demonstrated 
enrichment for signal transduction pathways and chromatin modifying enzymes/histone 
deacetylases and was associated with endothelial cells. Interestingly, other hub genes for this 
module were associated with DNA damage response and oncogene-induced senescence. The 
module also contained genes such as ATM (a gene which is activated by DNA double strand 
breaks), MSH2, as well as known oncogenes such as KRAS and RAF131.  

 
To confirm that modules were biologically relevant and generalizable to other datasets, module 
preservation analysis was performed. Module Z-summary scores (see methods) were calculated 
using data from the Lung Tissue Research Consortium (LTRC) as a validation dataset. Using the 
threshold established in [Supp Fig 1], we observed that 5 out of 6 senescence modules were 
conserved in this second dataset, indicating replication and biological relevance. We noted that 
the module that did not meet the threshold (20) was enriched for similar REACTOME terms and 
contained related genes to module 19, indicating that this was module may have been 
segregated due to the relatively sensitive module detection parameter (see methods). 
 
Somatic mutation burden is concentrated in lymphocytes and endothelial cells and is 
associated with high expression of senescence signature genes. 
 
To further understand the relationship between aging and cellular senescence, we analyzed 
somatic mutation data from a previously published GTEx study32 in order to determine the role 
of somatic mutation accumulation in the expression of senescence gene modules. Somatic 
mutation data was available for 321 of the original 572 subjects which we integrated with the 
gene module expression data [Fig 6A]. Two senescence modules (2,15) were among the most 
correlated with somatic mutation burden (133 total modules) [Fig 6B, 6C]. Interestingly, these 
were the two modules contained CDKN1A and CDKN2A, supporting the association of DNA 
damage with senescence. Among senescence-associated gene modules, module 2 had the 
strongest correlation with mutation burden and with age [Fig 6B]. In addition to CDKN2A/p16, 
this module also contained DNA damage response associated genes, including ATM, ATR, 
HMGB1, and MSH2.  To determine whether specific cell types were prone to somatic mutation 
accumulation, deconvoluted cell type proportions for each sample were correlated with global 
somatic mutation burden. We found arterial/venous endothelial cells and T cells were 
significantly associated with mutation burden (FDR p<0.05), indicating that these cell types had 
increased accumulation of somatic mutations in this dataset [Fig 6D]. We hypothesized that cell 
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types with greater association with somatic mutation burden would also express DNA damage 
response genes at higher levels in aged cells. To confirm this, and to validate the association of 
DNA damage response genes in this module with age, we calculated correlation with age in the 
single-cell RNAseq dataset [Fig 6E]. We observed higher correlation of markers such as ATM and 
ATR with age in endothelial cells (FDR p<0.001) and lymphocytes (FDR p<0.001), consistent with 
the higher mutation burden in these cell types. This module was also expressed primarily in 
endothelial cells [Fig 5C]. Taken together, these results suggest that there are specific gene 
networks that link DNA damage accumulation with cellular senescence. Additionally, specific 
cell types, including endothelial cells, appear to be more prone to damage accumulation. 
 
Aging and senescence gene expression modules are associated with differentially methylated 
regions. 
 
To determine whether epigenetic modifications play a role in module control, we analyzed 
whole methylome data from 27 samples with ages ranging from 29 to 79. Methylation data 
corresponding to 865918 CpGs were available. We integrated CpGs with their corresponding 
gene annotations and restricted analysis to CpGs that were linked to genes that were present in 
one of age (n=347956) or senescence-associated gene modules (n=111351) [Fig 7A, 7B]. Only 
CpGs that had β values for all subjects were retained. Approximately an equal number of CpGs 
were positively and negatively correlated with age [Fig 7C]. 10 senescence CpGs were 
significantly correlated with age (FDR p-value <0.05). Among these, the top two were both 
associated with ROCK2 [Fig. 7D], a gene that has been implicated in cardiac fibrosis and age-
related aortic stiffening 33. An additional two markers corresponded to ITGA1, a key regulator of 
Cell-ECM communication and the resulting dynamic reciprocity34. To better distinguish genes 
whose expression is strongly under epigenetic control, we identified genes with a significant 
proportion of CpGs showing strong association with age.  Fisher’s Exact Test was performed to 
find genes that were enriched with significantly age-correlated CpGs. Given the role of module 
15 in controlling induction of senescence-associated secretory phenotype (SASP), we applied 
this analysis to genes in this module. Expression of 207 genes was positively correlated with age 
and 58 genes were negatively correlated. Genes that were positively correlated with age had a 
higher proportion of enrichment for hypomethylated CpGs (p<0.05). Interestingly, the most 
enriched genes included well-known immune signaling genes such as IL1B, IL6R, and TNF [Fig 
7E]. Other genes included ETS2, a gene involved in senescence signaling downstream of 
p38MAPK35. Taken together these finding support a strong association of methylation 
epigenetic changes with age related changes in inflammatory gene expression changes.  
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Discussion 
 
In this study, we identified aging and senescent signatures in the aged human lung by 
performing integrated analysis of various large datasets. We developed co-expression networks 
using bulk RNAseq data from the GTEx project and validated this using several independent 
datasets: a single-cell RNAseq dataset, bulk RNAseq dataset from the LTRC, and FFPE lung tissue 
sections also from the LTRC. Gene modules reflected hallmarks of aging, including 
mitochondrial dysfunction, inflammation, and cellular senescence. Deconvolution revealed 
significant shifts in the cellular composition of the aged lung, with a decrease in epithelial cells 
and increased fibroblasts and endothelial cells. The module most strongly correlated with age 
(r=-0.31, FDR p=2e-12) was related to surfactant production and was expressed in AT2B cells, 
which declined in proportion with age. We examined gene networks enriched for SenMayo 
signature, and found that these were associated with specific cell types and had distinct 
molecular functions, including cell signaling, damage response pathways, SASP, and chromatin 
regulation. Analysis of somatic mutations revealed an association between elevated mutation 
burden and expression of senescence gene networks. Finally, these aging and senescence gene 
expression modules were associated with differentially methylated corresponding to 
inflammatory markers and genes such as ROCK2 and ITGA1. Together, the results of this multi-
omic analysis revealed cell specific changes associated with lung aging and their dependence 
and independence of cellular senescence. 
 
Our integrated analysis allowed us to obtain novel observations regarding the cellular changes 
that occur in the alveolar microenvironment with age. Our deconvolution of bulk lung RNAseq 
data indicated that the proportion of type I and type II alveolar epithelial cells decreases with 
age. Previous studies have suggested a decrease in AT2 cells with age, particularly in the 
context of severe COVID-1916 and pulmonary fibrosis12. Using gene co-expression analysis, we 
identified a module associated with surfactant production in type II alveolar cells that was 
negatively associated with age. HHIP, one of the genes most strongly associated with 
susceptibility to COPD in human GWAS studies and functionally with maintaining normal lung 
function and alveolar structures in mice 36-38, was a hub gene for this module.  This finding  
suggested an age-related change in AT2 cell subpopulations because HHIP is primarily 
expressed in one subpopulation identified as AT2B cells26,27. When examining single-cell data, 
AT2 cells were comprised of two major groups: AT2B cells that have high expression of 
surfactants and correspond with a functional alveolar maintaining phenotype, and AT2S cells 
that have lower levels of surfactant and correspond with a more stem-like progenitor 
phenotype28.  Our scRNAseq data, as well as our immunohistochemistry validation confirmed 
decreased expression of HHIP with age, as well as a decrease in AT2B cells in the aged lung. 
Interestingly, among AT2S cells, surfactant gene expression was also decreased. Thus, our 
analyses uncover a both a specific decline in AT2B with age, as well as a general decline in 
surfactant gene networks among alveolar epithelial cells. While the specific role of HHIP in this 
context is unknown, the decline in surfactant transcriptional programs and the relative decline 
in AT2B may have important implications in explaining the increased predisposition of the aged 
lung to alveolar injury and diseases such as ARDS and pneumonia9,39.  
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The co-expression networks in this study identified age-associated molecular programs which 
reflected some of the hallmarks of aging40. Positively correlated modules were enriched for 
terms such as signal transduction, ECM organization, and immunoregulatory interactions, while 
terms for negatively correlated modules included TCA cycle and respiratory electron transport, 
cell cycle, and metabolism of RNA. These findings are consistent with other studies that 
examined lung aging signatures in the GTEx dataset on a bulk level. de Vries et al.21 examined 
whole genome mRNA on lung tissue samples and identified 3509 genes that changed with age. 
This gene expression signature was validated by determining significance in the Genotype-
Tissue Expression (GTEx) dataset21. Another study examined gene expression changes in the 
GTEx project identified 876 genes that changed with age. Genes associated with lung aging 
were enriched for mitochondrial and lysosomal pathways41. Hence, our co-expression networks 
confirmed known changes associated with lung aging, while identifying a new pattern of 
alveolar epithelial cell aging.  
 
After assessing the changes in the transcriptome with age, we analyzed modules that were also 
associated with senescence. The top senescence-associated module included CDKN1A as a hub 
gene and was closely co-expressed with interferon signaling genes STAT3, IL4R, IL1R1, CCL2, 
and IL6, suggesting its central role in connecting cell cycle and SASP production. Another 
module (2) was expressed in most cell types and contained CDKN2A. Enrichment analysis 
showed that this module contained a wide variety of genes involved in DNA repair and DNA 
damage response. This supports the idea of specific gene networks that link cellular damage 
response and cellular senescence18. Notably, CDKN1A and CDKN2A were associated with 
different modules in this analysis, indicating their likely contributions to different senescence 
signaling pathways. This has been previously reported in the literature42. Our findings suggest 
that p16 and p21 have different roles in the induction and maintenance of cellular senescence 
in the lung. Whereas p21 appears to be more directly related to the SASP, p16 is linked with 
DNA damage response and oncogene induction. Additionally, we identified a senescence 
module specifically expressed in fibroblasts, which included known senescence gene IGF1 and 
many of its associated binding proteins. This module also contained many collagen genes and 
matrix metalloproteinases, suggesting a link between IGF signaling,  lung fibroblast function  
and dysregulation of extracellular matrix deposition associated with aging and senescence, 
consistent with recent findings 43, but these findings will require additional validation. 
Interestingly, while age-associated modules were enriched for SenMayo signature, SenMayo 
score was not significantly correlated with age in any cell type. Previous studies have shown 
significant heterogeneity in the relationship between senescence and chronological age across 
different tissues44,45. Moreover, the magnitude of the relationship depends on the marker used 
to detect senescence. Notably, the association between age and senescence has not been 
adequately studied in terminally differentiated cells, such as the AT1 cells that largely comprise 
the alveolar epithelium44,46. The lack of evidence for such an association in this study suggests 
that effects of cellular effects of lung aging distinct from the effects of cellular senescence in 
certain lung resident cell subpopulations. The differential somatic mutation burden and 
epigenetic changes as discussed below, suggest that this is indeed is the case, but more 
detailed studies are required.  
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Previous studies have suggested that cellular senescence is associated with macromolecular 
damage accumulation, with processes such as telomere shortening, oxidative stress, and 
somatic mutations contributing18,47. We identified senescence signatures in the aged lung and 
observed a strong association between somatic mutation burden and expression of 
senescence-associated genes in our samples. We determined that somatic mutations rates are 
highest in endothelial cells, which also had the highest expression of senescence signature.  
Notably, endothelial cell senescence has been associated with age-related lung diseases such as 
COPD48. Similar analysis has been performed on single-cell human pancreas data, showing a 
correlation between mutation load and CDKN2A expression in endocrine cells49. However, this 
has not been reported in the lung. Together, these findings provide support to the long-
standing hypothesis that accumulation of macromolecule damage, including DNA damage, 
leads to cellular senescence in the aged human lung18. Moreover, we show the previously 
undescribed observation that specific cells, especially endothelial cells, within the aged lung are 
more susceptible to mutation accumulation and cellular senescence. 
 
Finally, epigenetic regulation of aging and senescence signatures was examined by identifying 
variably methylated CpGs and integrating these with gene expression levels. We observed 
several CpGs that were differentially methylated with age. Many of these CpGs corresponded 
to senescence gene co-expression modules, suggesting that regulation of cellular senescence is 
at least in part by epigenetic mechanisms. This has been shown in a variety of cancer studies50. 
The top two senescence-associated CpGs that correlated with age both had ROCK2 as an 
annotation, which is involved cardiac fibrosis and age-related aortic stiffening 33  . Additionally, 
we saw evidence of epigenetic regulation of SASP, with genes such as IL1B, IL6, TNF, and ETS2 
having significant enrichment of age-correlated CpGs. These epigenetic regulators were 
associated with modules primarily expressed in endothelial cells and immune cells.  Hence, we 
identified novel epigenetic regulators of cellular senescence showed that they corresponded to 
specific lung cell types. 
 
The study has some limitations. There are limitations to bulk RNA sequencing deconvolution; 
Some cell types were less represented in our deconvoluted bulk RNAseq dataset [Supp Fig 2], 
also deconvolution from bulk data may represent decreased activity rather than a change in 
composition of cell types. These limitations may make the cell inferences inaccurate. We 
addressed this by using our single single-cell RNAseq data showing that examining module 
expression directly in single-cell RNAseq data recapitulates the cell-type specificity observed 
with deconvolution, and identifying cell subpopulation specific changes and validating them as 
we did in the case of the decline in AT2B with aging. Our method of determining senescence-
associated gene co-expression networks relied on previously published senescent gene lists, 
which likely do not fully reflect the cell-type specific mechanisms of cellular senescence in the 
aged human lung. However, we confirmed that SenMayo identifies senescent signature by 
assessing the expression of independent markers of senescence, such as CDKN1A. 
 
In summary, our study represents the most comprehensive multi-omic study of lung aging to 
date; we have identified novel cellular and molecular programs associated with aging and 
cellular senescence in specific cell types and discovered distinct changes in cellular composition, 
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somatic mutation burden and epigenetic changes in the aged human lung.  Further studies will 
be needed to further characterize and describe the temporal and spatial dynamics of these 
changes and define the role of these changes in the enhance disease predisposition and 
reduced resilience.   
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Methods 
 
Bulk RNAseq Datasets 
 
Lung-specific bulk RNAseq data was downloaded from the Genotype-Tissue Expression (GTEx) 
Portal (https://gtexportal.org/home/datasets). GTEx consists of samples from 54 non-diseased 
tissue sites across nearly 1000 individuals. Tissue was collected from postmortem/organ 
procurement cases. The data consisted of 572 samples with an age range of 20 to 79 years. 
Because the age of GTEx subjects was reported in 10-year ranges, the mean value of these 
ranges was used for subsequent analysis. The normalized gene expressions were log2 
transformed.  
 
A second bulk lung RNAseq dataset from the Lung Tissue Research Consortium (LTRC) was 
processed in parallel with the original dataset and used to assess for module preservation 
across datasets. This dataset was downloaded from NCBI GEO GSE47460 
(https://www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE47460). The same parameters for 
data pre-processing were applied to this dataset. This data set consisted of 91 samples, with an 
age range from 32 to 87 years. 
 
Weighted gene co-expression network analysis 
 
WGCNA was conducted using R/Bioconductor to identify modules in the normalized bulk 
RNAseq dataset. Analysis parameters were adjusted: sign of correlations between neighbours 
(TOMtype and networkType=‘signed’), and module detection parameter (deepSplit=2). 
Modules were identified by number in order of decreasing module size. Module eigengene 
(ME) was calculated as the first principal component of gene expression for the module. 
Module association with age was calculated using the module eigengenes (first principal 
component of expression profile). Pearson correlation adjusted for multiple comparisons by 
FDR. Module membership, a measure of the association of a gene to its module, was 
determined by Pearson correlation of gene expression to ME and used to rank module 
connectivity. 
 
Module preservation analysis was performed to determine whether modules defined in the 
GTEx dataset persisted in the LTRC dataset. This was done using the “modulePreservation” 
function in WGCNA, which calculates module connectivity preservation statistics including 
correlation of correlations and correlations of eigengene-based connectivity kME. Significance 
of each module preservation measure significance was calculated using the observed value and 
the permutation Z score.  

𝑍 =
𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑 −𝑚𝑒𝑎𝑛!"#$%&"'

𝑠𝑑!"#$%&"'
 

 
Z scores are a measure of module preservation compared to a random sample of genes. A 
composite measure called Z-summary was used to determine preservation. Modules were 
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considered preserved if their Z-summary score was greater than 10, indicating strong evidence 
of preservation. 
 
Enrichment Analysis & Hub Genes 
 
Enrichment of REACTOME pathways was determined using GProfiler in R. Modules were then 
assessed for the presence of genes from the SenMayo gene list14 using Fisher’s Exact Test (FET). 
 
Hub genes were defined as those that had a high module membership (correlation of gene 
expression to ME) and high correlation with age based on expression in GTEx RNAseq data. In 
order to validate these hub genes, the correlation of hub gene expression with age was 
calculated in the single-cell RNAseq dataset. Expression values were calculated for each cell-
type individually, and only cells with a minimum expression value were included in analysis. 
 
Single-cell RNAseq 
 
Single cell RNAseq data reported in our group’s previously reported IPF Cell Atlas22 were used 
for this study. Healthy controls consisted of 38 samples from 28 subjects. This dataset consisted 
of a total of 96083 cells, with an age range from 20-80 years. scRNAseq data analysis was 
performed using the standard Seurat pipeline. Gene expression values were normalized by 
“NormalizeData” method. The top 2,000 variable genes were identified by the 
“FindVariableFeatures” function. After scaling gene expressions, a linear dimensional reduction 
was performed using the variable genes by “RunPCA” functions, which generated 30 principle 
components. Clustering was performed using the “FindNeighbors” function, which uses a K-
nearest neighbor (KNN) graph. The “FindClusters” function was subsequently applied to 
optimize modularity by the Louvain algorithm. The resolution parameter for the clustering 
granularity was set to 0.05. The “RunUMAP” function was applied for nonlinear dimensional 
reduction and cluster visualization. 
 
The same parameters were used to cluster AT2 cells independently, with the exception of the 
resolution parameter, which was reduced to 0.01. A total of 1251 AT2 cells were present in the 
dataset. 
 
Module and gene age correlation and cell-type specificity were validated by calculating 
expression in the single-cell dataset (expression of each gene list subtracted by expression of 
random control feature sets). Module expression and SenMayo score were calculated using the 
“AddModuleScore” function in Seurat, which averages the expression of each gene list 
subtracted by expression of random control feature sets. Correlation between SenMayo score 
and age was calculated by determining the average SenMayo score per cell type, per subject, 
and correlating with subject age. 
 
To identify marker genes of each cell type, the “FindAllMarkers” function from Seurat was 
applied to identify differentially expressed genes using a Wilcoxon Rank Sum test. Only 
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significantly upregulated genes (FDR < 0.05) with 0.25 log fold change and 0.25 minimum 
expression fraction were retained as marker genes. 
 
Deconvolution 
 
The GTEx bulk RNAseq dataset was deconvoluted to determine cell type proportions using 
MuSiC in R51. MuSiC uses support vector regression on gene expression profiles using reference 
gene expression signatures. Our single-cell RNAseq dataset was used for this purpose. The cell 
type composition was determined for each sample from the signatures in the original 
expression profiles. The resulting cell type proportions were correlated with the module 
eigengenes. 
 
Somatic Mutations 
 
Somatic mutation data was acquired from Garcia et al.32. Mutations in this study were 
calculated by mapping raw RNAseq reads to the reference genome Hg19 and deploying a 
comprehensive mutation calling pipeline. False positive mutation calls were minimized by 
accounting for sequencing errors, RNA editing events, germline variants, and other sources of 
error. Somatic mutation burden for the present study was calculated using the sum of somatic 
mutation counts for each sample32.  
 
Methylation 
 
Donor lungs that were not suitable for transplantation were collected at University Hospital 
Leuven, Belgium, and used as “healthy” controls. 28 donor lungs were used ranging in age from 
20-80, with 7 females and 21 males. This study was performed with approval from the hospital 
ethical committee (S51577). Donor lungs were obtained as previously described 52,53.  
Whole methylome data was performed on all 28 samples. Methylation was assessed using the 
Infinium Human Methylation 450K Bead Chip (Illumina, Inc). A total of 865918 CpGs were 
present in the dataset.  At each CpG site, methylation was reported as a β value, which is the 
proportion of signal obtained from the methylated beads over the sum of signal from all beads. 
β values ranged from 0 (no methylation) to 1 (full methylation). Pre-processing was performed 
per the manufacturer’s protocol. Data were normalized to internal controls. Signals 
corresponding to probes with a detection p-value >0.05 were excluded from further analysis. 
 
Methylation data was analyzed using the SeSAMe package in R. Analysis was restricted to CpGs 
for which a gene annotation was available. Only CpGs that had β values for all subjects were 
retained. 
 
A total of 347956 CpGs included a gene annotation in an age-associated module and were used 
in subsequent analysis. Correlation with age was determined using the “DML” function in 
SeSAMe, which takes a β value matrix and phenotype data as inputs. 
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To better distinguish genes whose expression is strongly under epigenetic control, we identified 
genes with a significant proportion of CpGs showing strong association with age. Fisher’s Exact 
Test was performed to find genes that were enriched with significant CpGs. 
 
Immunohistochemistry 
 
FFPE samples were provided by the LTRC and were derived from subjects undergoing thoracic 
surgery. These subjects were diagnosed as being controls or having interstitial lung disease or 
COPD as determined by clinical history, CT scan, and surgical pathology. There was no 
intervention, as these are cross-sectional data. This dataset included 582 total subjects (254 
have interstitial lung disease, 220 have COPD, and 108 are controls). 
 
FFPE samples from healthy control human subjects were used for IHC. Samples were split into 
young and aged groups for immunohistochemistry, with 6 FFPE samples in each group. Age 
ranged from 44-53 years for young samples to 66-78 years for aged samples. FFPE blocks were 
processed as 5 micron thick sections. 
 

 Aged Young 
Age (years) 66 - 78 44 - 53 
Smoking History (>100 pkyr) 3Y, 3N 3Y, 3N 
Sex 3F, 3M 3F, 3M 

Table 1: Subject demographic information for FFPE samples used for immunohistochemistry. 
 
Microwave antigen retrieval was performed using a pH 6.0 sodium citrate antigen retrieval 
buffer. SFTPC was detected using mouse anti-SFTPC polyclonal antibody diluted 1:200 (Santa 
Cruz Biotechnology, #518029) and HHIP was detected using rabbit anti-HHIP polyclonal 
antibody diluted 1:1500 (ABClonal Science, #A5872). Slides were incubated with primary 
antibody at 4°C for 16 hours, and later with HRP and AP Red secondary antibody for 1 hour. 
Immunoreactive signal was visualized with DAB solution (Vector Laboratories) and AP Red 
(Vector Laboratories). Slides were then counterstained with hematoxylin, dehydrated, and 
mounted. 
 
To quantify staining, digital images of slides (40x magnification) were viewed using NIS-
Elements (Nikon Instruments). Positive-stained cells were counted using color deconvolution in 
FIJI (National Institutes of Health). 5 fields per sample were obtained and cells were counted 
with a minimum size threshold of 300 pixels. 
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Figure 1: Study design and co-expression networks. (A) Gene co-expression networks were generated from GTEx 
bulk lung RNAseq data. Deconvolution of bulk RNAseq was performed using single-cell RNAseq data as a reference 
to determine cell type specificity of gene networks. Finally, enrichment for REACTOME terms and SenMayo signature 
was performed to characterize modules prior to downstream analysis. This schematic was generated with the assis-
tance of DALL·E 2. (B) Co-expression networks developed in this study. The x-axis shows module size and the y-axis 
shows the FDR-corrected p-value for the correlation between the module eigengene and age. (C) Bar plots labelled 
with the top REACTOME term for age-associated modules. The top panel is positively correlated genes and the 
bottom panel is negatively correlated genes. The length of the bar represents the correlation of the module eigengene 
and age. The color of the bar corresponds to the hypergeometric test p-value for the REACTOME term enrichment. 
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Figure 2: Age-associated gene co-expression modules correspond to specific cell types. (A) Changes in cell type 
proportions versus age. The Fisher Z-transformed correlation values for age versus cell type proportion and corre-
sponding p-values are listed. (B) Cell-type specificity of 30 age-associated module eigengenes. The left panel shows 
the expression score for each module in each cell type in single-cell RNAseq data (38 samples). The right panel 
shows the correlation values between cell-type proportions and module eigengene in the deconvoluted bulk RNAseq 
dataset. (C) Violin plots for selected hub genes in age-associated modules. (D) Age correlation of selected hub genes 
in single-cell RNAseq data.
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Figure 3: HHIP expression is reduced in ageing and correlates with markers of ATII cells. (A) Violin plot of HHIP 
expression across cell types. (B) UMAP representation of HHIP expression. (C) HHIP expression declines with age 
(r=-0.34, p=9e-17). The x-axis is age and the y-axis is average expression of HHIP in bulk RNAseq. (D) ATII cell 
markers correlate with HHIP and are negatively correlated with age in single-cell RNAseq data. (E) UMAP representa-
tion of AT2 cells, revealing AT2A and AT2B subpopulations. (F) Proportion of cells in each sample expressing HHIP in 
AT2A vs AT2B subpopulations based on scRNAseq data. (G) Representative immunohistochemistry images for dual 
SPC/HHIP staining. The top panel is a young subject and the bottom panel is an aged subject. SPC was stained with 
DAB (brown), HHIP was stained with AP Red (pink). Red arrowheads indicate SPC positive cells and blue arrowheads 
indicate dual positive, co-stained cells (H) The proportion of dual positive cells among SPC positive cells in young 
versus aged subjects.
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Figure 4: SenMayo scoring can be used to identify senescence signature in RNAseq data. (A) SenMayo score for 
various cell types in single-cell RNAseq data. (B) High SenMayo cells cluster together on a UMAP plot. The dataset 
was downsampled to include up to 250 cells per cell type. The top panel depicts cells clustered by cell type. The 
bottom panel shows high SenMayo cells, highlighted in dark blue, clustering together. (C) High SenMayo cells have 
higher expression of independent senescent markers such as CDKN1A. (D) Breakdown of cell type composition of 
high SenMayo cells. (E) Heatmap showing module enrichment for senescent signature for 6 senescence gene lists. 
Heatmap intensity corresponds to the FET p-value. 
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Figure 5: Deconvolution reveals cell-type specific signatures of senescence. (A) Table of senescence-associated 
modules. This table includes the number and identities of SenMayo genes present in each module. (B) Heatmap 
showing enrichment of top 3 REACTOME terms for each module. (C) Cell-type specificity of 6 senescence-associated 
module eigengenes. The top panel shows the expression score for each module in each cell type in single-cell 
RNAseq data. The bottom panel shows the correlation values between cell-type proportions and module eigengene in 
the deconvoluted bulk RNAseq dataset. (D) Cell-type specificity of senescence-associated modules on UMAP.
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Figure 6: Senescence signatures are associated with somatic mutation burden and DNA damage response. (A) 
Somatic mutation burden increases with age. (B) Plot of age correlation versus global mutation burden. The x-axis 
shows correlation values between module expression and age correlation. The y-axis shows correlation values 
between module expression and global mutation burden. (C) 3D plot of age correlation versus global mutation burden 
versus module mutation burden. (D) The Fisher Z-transformed correlation values for mutation burden versus cell type 
proportion and corresponding p-values. (E) Age correlation of DNA damage response genes in single-cell RNAseq 
data.
 

E.

C.B.

D.

A.
.CC-BY-NC-ND 4.0 International licenseavailable under a

was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 
The copyright holder for this preprint (whichthis version posted April 19, 2023. ; https://doi.org/10.1101/2023.04.19.536722doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.19.536722
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 7: Senescent genes are regulated epigenetically. (A) Manhattan plot of all CpGs with a gene annotation in 
age-associated modules. (B) Manhattan plot of all CpGs with a gene annotation in senescence-associated modules. 
(C) Plot of delta beta values and log transformed p-values for all senescence-associated CpGs. (D) The top ten 
senescence-associated CpGs, sorted by FDR p-value for age correlation. (E) The top ten genes in the SASP module 
(15), sorted by FET p-value for enrichment of age-associated CpGs.
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